一.概述
北京市2015年度激光共焦超高分辨显微学学术研讨会于3月17日在北科大厦成功举行。该会议旨在推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。会议得到了相关学者的热烈响应,约160余人参加了此次会议。
二.超高分辨显微技术的发展情况
在17世纪荷兰博物学家、显微镜创制者列文虎克第一次将光线通过透镜聚焦制成光学显微镜并用它观察微生物,以后显微镜就一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。正是因为有了列文虎克的这项伟大发明及其后继者对显微镜技术的不断改进和发展,人们才能够对细胞内部错综复杂的亚细胞器等结构的形态有了初步的了解。
然而为了更好地理解生命过程和疾病发生机理,生物学研究需要观察细胞内器官等细微结构的精确定位和分布,阐明蛋白等生物大分子如何组成细胞的基本结构,重要的活性因子如何调节细胞的主要生命活动等,而这些体系尺度都在纳米量级,远远超出了常规的光学显微镜的分辨极限(约为200nm)。
为了解决生命科学研究面临的一系列难题,超高分辨率显微技术应时而生,并且一经问世就得到了广泛的响应。2008年Nature Methods将这一技术列为年度之最。2014年,美国科学家Eric Betzig,德国科学家Stefan W. Hell,美国科学家William E.Moerner,因他们在超分辨率荧光显微技术领域取得的成绩,获得了该年度的诺贝尔化学奖。
三.会议相关报告
北京大学席鹏课题组一直致力于超分辨显微成像技术研究。在报告中,席鹏介绍了超分辨显微技术的发展与应用,并详细介绍了课题组研究的两类超分辨技术:多色联合标记超分辨技术和多模态三维超分辨技术。其中多色联合标记超分辨研究成果发表于Nature出版的Scientific Reports期刊,多模态三维超分辨技术相关研究成果发表于Springer和清华大学出版社联合出版的NanoResearch期刊上。
库玉龙介绍了蔡司在2014年最新推出的Airyscan技术。Airyscan技术可以应用于蔡司LSM 800和LSM880激光共聚焦显微镜,是第一款可用于正置显微镜观察的超高分辨率产品。据介绍,传统的共聚焦显微镜通过针孔来阻止非焦平面的发射光。Airyscan检测器不在针孔处限制光通量,而是直接用一个32通道的六边形平面探测器收集所有发射光,其中每个探测器元件都是有效的单个针孔。这一技术的使用,使LSM880的总体分辨率增加了1.7倍,即140 nm的横向分辨率和 400nm的轴向分辨率。
吴立君介绍说,2014年诺贝尔化学奖获得者Stefan W. Hell与徕卡显微系统的工程师和科学家有长期良好的合作关系,从他还是博士生时,他就与徕卡共同研发超高分辨显微镜,至今双方合作超过15年。早在2004年双方合作推出了商业化4Pi超高分辨显微镜;2007年, Stefan W. Hell将STED(受激发射损耗)专利技术授权徕卡研发。
四.超高分辨显微技术的应用情况
很长时间以来,人们都认为光学显微镜技术无法突破“阿贝分辨率”,即永远不可能获得比所用光的波长一般更高的分辨率。然而近十多年来,科学家们在此领域获得了精彩的成果,突破了光的衍射极限分辨率。其中尤其是STED(受激发射损耗)显微技术和分子定位显微技术,让科学家能在纳米水平观察到活细胞内个别分子的作用路径,可以看到分子是如何在大脑神经细胞形成突触的;也可以跟踪哪些与帕金森症、阿茨海默症等疾病有关的蛋白质分子聚集,在真正意义上扩大了科学家们的视野。而这些都将有助于人们进一步了解这些疾病的形成机理,帮助我们去克服治愈它们。